学术论文:
[1]H Gao, W Liu, X Shen*. Design
and performance study of a Tm‑doped 4 × 4 square array
polarization‑maintaining large‑mode‑area fiber. Optical and Quantum
Electronics, 2025, 57:45(1-17).
[2]X Shen*, Y Li, L Zhang, T Yang, L Liu.
Preparation and performance study of a Tm3+-doped silicate
heterogeneous helical cladding large mode area fiber. Optical Fiber Technology,
2025, 90:104104.
[3]周键鸿,沈骁*.掺铥异质螺旋包层大模场光纤温度适应性研究. 中国激光, 2025, 52(6): 0606004(1-10).
[4]R Luo, J Xu, C Yang, L Zhang, AND X Shen*.
Preparation and performance study of a Tm3-doped silica optical fiber by
sol-coating and laser drawing technology. Applied Optics, 2024, 64(3):677-680.
[5]Sicheng Jin, X Shen*. Design and characteristics
study of bend-resistant and low-crosstalk few-mode multi-core fiber. 2024, Optik,
297:171560.
[6]X Shen, Y Li, W Wei, et al. Mode transmission
performance study of a novel heterogeneous helical cladding fiber with an
isolation ring [J]. Optical and Quantum Electronics, 2024, 56(7):1197.
[7]X Shen, Yi Sun, et al.
Investigation of a Large-Mode-Area Fiber Designed for 2.0 µm Based on
Multi-Layer Holes Resonance. IEEE PHOTONICS JOURNAL, 2023, 15(6):7101708.
[8]沈骁, 杨广利等. 新型高掺Tm3+石英光纤制备及2.0 μm激光性能研究. 光学学报,2023, 43(4):0414001.
[9]沈骁, 李婴婴等. 异质螺旋包层大模场光纤模式传输特性研究. 光学学报,2022, 42(20):50-56.
[10]X Shen, J H Zhou, G L Yang, J Jiang*, W Wei*.
Temperature characteristics analysis of a Tm3+‑doped
heterogeneous helical cladding fiber amplifier. Applied Physics B, 2022, 128:221,
[11]X Shen*, L L Zhang, J Y Ding, W Wei. Analysis on light power
and three-dimentional temperature distribution characteristics of gain guided
and index alternate-guided fiber lasers. Journal of Optics, 2022, 22(7):075703.
[12]X Shen, Z J Yang, X M Xi, Z X Zhang, W Wei. Numerical investigation
for the mode transmission characteristics of a large mode area optical fiber
with heterogeneous helical claddings designed for 2.0 µm. Optics Letters, 2021,
46(17): 4342-4345.
[13]X Shen, S Chen, Y Sun, et al. Investigation of Er3+-Doped Phosphate
Glass for L plus Band Optical Amplification. IEEE Photonics Journal, 2021,
13(6):2200506.
[14]X Shen*, Z J Yang, S Chen, et al. Fabrication and Performance of a
Heterogeneous-Helical-Cladding Fiber.
IEEE Photonics Journal, 2021, 13(4):7100603.
[15]Z Yang X Shen*. A large mode area fiber with
dual-helical-leakage-channels [J]. OPTIK, 2021, 250: 168340.
[16]X Shen*, G Cheng, L L Zhang, W Wei*. Fabrication of a hybrid-cladding tellurite glass fiber doped with
Tm3+ and Ho3+.
Journal of Luminescence, 2020, 227:117540.
[17]X Shen, W Wei, et al. Analysis on light power
and three-dimentional temperature distribution characteristics of gain guided
and index alternate-guided fiber lasers [J]. Journal of Optics, 2020, 22:
075703, 1/4(排名), SCI.
[18]X Shen, W Wei, et al. Threshold characteristics
analysis of a forward pumped Nd3+-doped gain-guided and index
alternate-guided fiber laser [J]. OPTIK, 2020, 224: 165739.
[19] X Shen, W Wei, et al. Fabrication and
performance investigation of the Nd3+-doped Heterogeneous helical
cladding phosphate glass fiber [J]. Optics
Communications, 2020, 473:125925.
[20] X Shen, w Wei, et al. A segmented
heterostructure cladding fiber designed for extreme large mode area [J].Optik,
2020, 212: 164708.
[21]X Shen, L Zhang, J Ding
and W Wei*. Design, fabrication, and optical gain performance of the gain-
guided and index-antiguided
Nd3+-doped phosphate glass fiber. Journal of the Optical Society of America B, 2017, 34(5):998-1003.
[22] W T Zhang, X Shen, et al. 3D thermal analysis
of end-pumped Nd3+-doped index-crossover gain guided-index
antiguided fiber laser [J]. LASER PHYSICS, 2017, 27: 065101.
[23]X Shen and W Wei*. Gain guided and index alternate-guided fibers
designed for large-mode-area and
single-mode laser with
higher output power and slope efficiency. Optics Express, 2016, 24(2):1089-1095.
[24] X Shen W Wei, et al. Analysis of
dual-end-pumped Nd3+-doped index-crossover gain guided-index
antiguided fiber laser [J]. Optics Communications, 2016, 366: 205-209.
[25] X Shen, W Wei.Threshold Characteristics
Analysis of Dual-end-pumped Nd3+-doped Gain-guided and
Index-antiguided Fiber Lasers [J].
INTERNATIONAL SEMINAR ON APPLIED PHYSICS, OPTOELECTRONICS AND PHOTONICS, 2016,
61:06011.
[26]X Shen, W Wei*, et al. Threshold characteristics analysis of a
uniformly side-pumped Yb3+-doped gain-guided and index-antiguided
fiber laser. Optics & Laser Technology, 2015, 68: 1-5.
[27] 沈骁,韦玮等. 增益导引-折射率反导引大模场光纤激光器抽运技术研究进展 [J]. 物理学报,2015,
64(2):024210.
国家发明专利:
[1] 沈骁, 高豪豪, 平作坤, 刘文诗. 一种藕断丝连结构N×N矩形阵列多芯光纤及其制备方法,国家发明专利,申请号:202410141730.7,2024.
[2] 沈骁,平作坤,刘文诗. 一种基于4×4矩形阵列多芯光纤的激光相干组束装置,国家发明专利,申请号:202410105599.9,2024.
[3] 沈骁,高豪豪. 一种稀土掺杂n x n矩形阵列保偏大模场多芯光纤,国家发明专利,申请号:202410092805.7,2024.
[4] 沈骁,霍加磊,韦玮一种异质螺旋包层结构的大模场单模光纤, 专利号:ZL 201810007368.9,授权日期:2020。
[5] 沈骁.一种二维光学位移传感器, 专利号:ZL 201910887477.9, 授权日期:2021。
[6] 沈骁.一种高旋光率材料旋光率检测装置, 专利号:ZL 201910887489.1, 授权日期:2021。
[7] 韦玮,沈骁.一种太阳能追踪传光照明装置, 专利号:ZL 201510645689.8, 授权日期:2018。
[8] 韦玮,沈骁等.一种级联式增益导引-折射率反导引大模场光纤激光器, 专利号:ZL 201410159506.7, 授权日期:2016。
[9] 韦玮,沈骁。一种大模场D型包层光纤侧面泵浦装置,专利号:201210576596.0,授权日期:2015。
[10]韦玮,沈骁等。一种大模场方形包层光纤双侧面泵浦装置,专利号:ZL 201310000976.4,授权日期:2014。