个人信息

姓  名: 余亮 性  別: 导师类型: 博士生导师
技术职称: 教授 电子邮箱: liang.yu@njupt.edu.cn
学术型博士招生学科: (081100)控制科学与工程
学术型硕士招生学科: (081100)控制科学与工程
专业型硕士招生类别(领域): (085400)电子信息
photo

个人简介:

余亮,男,1986年10月生,湖北仙桃人,南京邮电大学自动化学院、人工智能学院教授,博导,院长助理。华中科技大学博士,西安交通大学博士后,英国帝国理工学院访问学者。入选IEEE Senior Member,江苏省“青蓝工程”优秀青年骨干教师培养对象,南京邮电大学1311人才计划鼎新学者,美国斯坦福大学与爱思唯尔数据库发布的《2021-2024年全球前2%顶尖科学家榜单》。担任国际权威期刊IEEE Transactions on Industrial Informatics和IEEE Transactions on Smart Grid编委(Associate Editor)、北大中文核心期刊《信息与控制》青年编委、IEEE PES智能电网与新技术委员会(中国)智能电网与人工智能分委会理事,中国自动化学会自适应动态规划与强化学习专业委员会委员,中国指挥与控制学会集群智能与协同控制专业委员会委员,中国人工智能学会青年工作委员会委员,中国指挥与控制学会青年工作委员会委员,以及30余个SCI期刊评审人(如IEEE TSG, IEEE TPWRS, IEEE TII, IEEE TSTE, IEEE TIE, IEEE/CAA JAS等),国家自然科学基金通讯评审专家。在教学方面,主讲本科生《算法设计与分析》、《强化学习》课程、硕士生《深度强化学习技术专题》以及博士生《强化学习基础与前沿》课程,指导(含在读/毕业、联合指导)博士生3人,硕士生26人,研究生获国家奖学金2人,指导本科生获国家奖学金1人,与2名硕士生和1名本科生合作的3篇论文均入选ESI高被引论文并被谷歌学术引用累计1100次。在科研方面,先后主持国家级、省级以及市厅级项目多项,企业委托项目1项。长期从事人工智能赋能电力能源系统规划与运行方面的研究工作,助力复杂环境下电力能源系统的安全可靠绿色经济运行和双碳目标国家重大战略需求的实现。出版英文专著1部,发表学术论文54篇(一作33篇,SCI收录31篇,IEEE汇刊17篇,ESI高被引论文3篇),其中:在国际权威/重要期刊IEEE Transactions on Industrial Informatics、IEEE Transactions on Smart Grid、IEEE Transactions on Automation Science and Engineering、IEEE Transactions on Parallel and Distributed Systems、IEEE Transactions on Cloud Computing、IEEE Transactions on Artificial Intelligence、IEEE Internet of Things Journal、IEEE Systems Journal、Building and Environment等发表论文26篇。研究成果累计获Google学术引用2623次,SCI他引1400余次。申请发明专利27件,授权20件。曾获2022年度国际权威期刊IEEE Transactions on Smart Grid最佳论文、2023年江苏省自然科学百篇优秀学术成果论文奖、2023年江苏省高等学校科学技术研究成果奖、2015年湖北省优秀博士学位论文奖、南京市第11届和第12届自然科学优秀学术论文奖各一项。




研究领域:

研究兴趣:信息物理融合能源系统(聚焦智慧建筑能源系统、新型电力系统、数据中心等)规划与运行、深度强化学习、大语言模型。

科研项目:





主持国家级、省级以及市厅级项目6项,企业委托项目1项。





代表性学术成果:

[1] Z. Chen, L. Yu, M. Chen, D. Yue, T. Zhang, Y. Ye, G. Strbac, and M. Zhang, Reliability and Comfort-aware Operation Optimization for Hydrogen-based Building Energy Systems in Off-grid Mode, IEEE Transactions on Smart Grid, Accepted, 2025.

[2] L. Yu, Z. Chen, D. Yue, Y. Ye, G. Strbac, and Y. Wang, Coordinated Operation Optimization of Grid-interactive Residential Buildings Based on Neural Network-assisted Hierarchical Model Predictive Control, IEEE Transactions on Automation Science and Engineering, DOI:10.1109/TASE.2025.3551649, 2025.

[3] L. Yu, D. Yue, Z. Chen, S. Zhang, Z. Xu, and X. Guan, Online Operation Optimization for Hydrogen-based Building Energy Systems under Uncertainties, IEEE Transactions on Smart Grid, vol. 15, no. 5, pp. 4589-4601, 2024.

[4] Z. Chen, L. Yu, S. Zhang, S. Hu, and C. Shen, Multi-agent Hierarchical Deep Reinforcement Learning for Operation Optimization of Grid-interactive Efficient Commercial Buildings, IEEE Transactions on Artificial Intelligence, vol. 5, no. 8, pp. 4280-4292, 2024.

[5] L. Yu, D. Yue, Y. Tan, S. Zhang, Y. Yang, C. Dou, and V. Kuzin, Online Distributed Coordination Operation for Grid-interactive Efficient Residential Buildings, IEEE Transactions on Smart Grid, vol. 15, no. 4, pp. 3639-3652, 2024.

[6] T. Zhang, L. Yu, D. Yue, C. Dou, X. Xie, L. Chen, Two-timescale coordinated voltage regulation for high renewable-penetrated active distribution networks considering hybrid devices, IEEE Transactions on Industrial Informatics, vol. 20, no. 3, pp.3456-3467, 2024.

[7] L.Yu, Z. Xu, X. Guan, Q. Zhao, C. Dou, and D. Yue, Joint Optimization and Learning Approach for Smart Operation of Hydrogen-based Building Energy Systems, IEEE Transactions on Smart Grid, vol. 14, no. 1, pp.199-216, 2023.

[8] L.Yu, Z. Xu, T. Zhang, X. Guan, and D. Yue, Energy-Efficient Personalized Thermal Comfort Control in Office Buildings Based on Multi-Agent Deep Reinforcement Learning, Building and Environment, vol. 223, pp. 109458:1-12, 2022. 

[9 L. Yu, S. Qin, M. Zhang, C. Shen, T. Jiang, and X. Guan, A Review of Deep Reinforcement Learning for Smart Building Energy Management, IEEE Internet of Things Journal, vol. 8, no. 15, pp.12046-12063, 2021.

[10] L. Yu, Yi Sun, Z. Xu, C. Shen, D. Yue, T. Jiang, and X. Guan, Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings, IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 407-419, 2021.

[11] L. Yu, W. Xie, D. Xie, Y. Zou, D. Zhang, Z. Sun, L. Zhang, Y. Zhang, and T. Jiang, Deep Reinforcement Learning for Smart Home Energy Management, IEEE Internet of Things Journal, vol. 7, no. 4, pp. 2751-2762, 2020.

[12] L. Yu, D. Xie, C. Huang, T. Jiang, and Y. Zou, Energy Optimization of HVAC Systems in Commercial Buildings Considering Indoor Air Quality Management, IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5103-5113, 2019.

[13] L. Yu, T. Jiang, and Y. Zou, Online Energy Management for a Sustainable Smart Home with an HVAC Load and Random Occupancy, IEEE Transactions on Smart Grid, vol. 10,  no. 2, pp. 1646-1659, 2018.

[14] L. Yu, T. Jiang, and Y. Zou, Price-Sensitivity Aware Load Balancing for Geographically Distributed Internet Data Centers in Smart Grid Environment, IEEE Transactions on Cloud Computing, vol. 6, no. 4, pp. 1125-1135, 2018.

[15] L. Yu, T. Jiang, and Y. Zou, Distributed Real-Time Energy Management in Data Center Microgrids, IEEE Transactions on Smart Grid, vol. 9, no.4, pp. 3748-3762, 2018.

[16] L. Yu, D. Xie, T. Jiang, Y. Zou, and K. Wang, Distributed Real-Time HVAC Control for Cost-Efficient Commercial Buildings under Smart Grid Environment, IEEE Internet of Things Journal, vol. 5, no. 1, pp. 44-55, 2018.

[17] L. Yu, T. Jiang, and Y. Zou, Distributed Online Energy Management for Data Centers and Electric Vehicles in Smart Grid, IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1373-1384, 2016.

[18] L. Yu, T. Jiang, Y. Zou, and Z. Sun, Joint Energy Management Strategy for Geo-distributed Data Centers and Electric Vehicles in Smart Grid Environment, IEEE Transactions on Smart Grid, vol. 7, no. 5, pp.2378-2392, 2016.

[19] L. Yu, T. Jiang, Y. Cao, and Q. Qi, Joint Workload and Battery Scheduling with Heterogeneous Service Delay Guarantees for Data Center Energy Cost Minimization, IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 7, pp. 1937-1947, 2015.

[20] L. Yu, T. Jiang, and Y. Cao, Energy Cost Minimization for Distributed Internet Data Centers in Smart Microgrids Considering Power Outages, IEEE Transactions on Parallel and Distributed Systems, vol. 26, no.1, pp. 121-130, 2015.

[21] L. Yu, T. Jiang, Y. Cao, and Q. Qi, Carbon-aware Energy Cost Minimization for Distributed Internet Data Centers in Smart Microgrids, IEEE Internet of Things Journal, vol. 1, no. 3, pp. 255-264, 2014.

[22] L. Yu, T. Jiang, Y. Cao, and Q. Zhang, Risk-constrained Operation for Distributed Internet Data Centers in Deregulated Electricity Markets, IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 5, pp. 1306-1316, 2014.

[23] T. Jiang, Y. Cao, L. Yu, and Z. Wang, Load Shaping Strategy Based on Energy Storage and Dynamic Pricing in Smart Grid, IEEE Transactions on Smart Grid, vol. 5, no. 6, pp. 2868-2876, 2014.

指导的优秀研究生代表:

[1] 博士生陈志强,发表IEEE Transactions论文4篇(其中:一作2篇,二作1篇,三作1篇)

[2] 硕士生孙毅,2021年以第二作者发表IEEE Transactions论文1篇,谷歌学术引用319次,入选ESI高被引论文,获IEEE TSG 2022最佳论文

[3] 硕士生谢玮玮,2020年以第二作者发表IEEE Internet of Things Journal论文1篇,谷歌学术引用411次,入选ESI高被引论文

[4] 本科生秦书琪,2021年以第二作者发表IEEE Internet of Things Journal论文1篇,谷歌学术引用370次,入选ESI高被引论文。