研究方向:
偏微分方程数值解,主要研究间断Galerkin方法的相关理论分析和数值应用
[1] 半隐半显式全离散局部间断Galerkin方法的分析和应用. 南京邮电大学引进人才科研启动基金项目,NY215067,5万,2016.1-2018.12,主持,已结题。
[2] 高阶方程的半隐半显式局部间断Galerkin方法. 江苏省青年科学基金项目,BK20160877,20万,2016.7-2019.6,主持,已结题。
[3] 半隐半显式局部间断Galerkin方法的研究. 国家自然科学基金青年科学基金项目,NSFC.11601241,18万,2017.1-2019.12,主持,已结题。
[4] 间断Galerkin方法的局部误差估计. 国家自然科学基金面上项目,NSFC.11671199,48万,2017.1-2020.12,参与,在研。
[5] 间断Galerkin方法在双曲守恒律和Vlasov系统中的算法设计及应用. 国家自然科学基金面上项目,NSFC.11871428,54万,2019.1-2022.12,参与,在研。
[1] H. J. Wang, Q. Zhang, S. P. Wang and C.-W.
Shu, Local discontinuous Galerkin methods with explicit-implicit-null time
discretizations for solving nonlinear diffusion problems, Science China Mathematics., 63:1(2020),
pp.183-204.
[2] H. J. Wang, Y. X. Liu, Q. Zhang and C.-W. Shu, Local discontinuous Galerkin methods with
implicit-explicit time-marching for time-dependent incompressible fluid flow, Mathematics of Computation, 88:
315 (2019), pp.91-121.
[3] H. J. Wang, Q. Zhang and C.-W. Shu, Implicit-explicit
local discontinuous Galerkin methods with generalized alternating numerical
fluxes for convection-diffusion problems, Journal of Scientific
Computing, 81(2019), pp.2080-2114.
[4] H. J. Wang, J.
Zheng, F. Yu, H. Guo and Q. Zhang, Local discontinuous Galerkin method
with implicit-explicit time marching for incompressible miscible displacement
problem in porous media, Journal of Scientific Computing, 78 (2019),
pp.1-28.
[5] H. J. Wang, Q. Zhang and C.-W. Shu, Third
order implicit-explicit Runge-Kutta local discontinuous Galerkin methods with
suitable boundary treatment for convection-diffusion problems with Dirichlet
boundary conditions, Journal of Computational and Applied Mathematics, 342
(2018), pp.164-179.
[6] H. J. Wang, Q. Zhang and
C.-W. Shu, Stability analysis and error estimates of local discontinuous
Galerkin methods with implicit-explicit time-marching for the time-dependent
fourth order PDEs, ESAIM: Mathematical Modelling and Numerical Analysis (M2AN).
51 (2017), pp.1931-1955.
[7] H. J. Wang, S. P. Wang, Q.
Zhang and C.-W. Shu, Local discontinuous
Galerkin methods with implicit-explicit time-marching for multi-dimensional
convection-diffusion problems. ESAIM: Mathematical Modelling and Numerical
Analysis (M2AN). 50 (2016), pp.1083-1105.
[8] H. J. Wang, C.-W. Shu and
Q. Zhang, Stability analysis and error
estimates of local discontinuous Galerkin methods with implicit-explicit
time-marching for nonlinear convection-diffusion problems. Applied
Mathematics and Computation, 272 (2016), pp.237-258.
[9] H. J. Wang, C.-W. Shu and
Q. Zhang, Stability and error estimates
of the local discontinuous Galerkin method with implicit-explicit time-marching
for advection-diffusion problems. SIAM Journal on Numerical Analysis, 53(1)
(2015), pp. 206-227.
[10] H. J. Wang and Q. Zhang, Error estimate on a fully discrete local
discontinuous Galerkin method for linear convection-diffusion problem. Journal
of Computational Mathematics, 31(3) (2013), pp.283-307.
[11] Y. Xu, Q. Zhang, C.-W. Shu and H.
J. Wang, The L2-norm stability analysis of Runge-Kutta discontinuous
Galerkin methods for linear hyperbolic equations, SIAM Journal on Numerical
Analysis, 57:4 (2019), pp.1574-1601.
[12] C. H. Xia, Y. Li and H. J. Wang, Local discontinuous Galerkin methods with explicit Runge-Kutta time
marching for nonlinear carburizing model, Mathematical Methods in the
Applied Sciences, 41(12) (2018), pp.4376-4390.
[13]
Y. Cheng,
Q. Zhang and H. J. Wang, Local analysis of the local
discontinuous Galerkin method with the generalized alternating numerical fluxes
for two-dimensional singularity perturbed problem, International Journal of Numerical Analysis and
Modeling, 15:6 (2018), pp.785-810..1-28.