Tao, Q., Wang, X., Gu, Y., and Li, W. (2025). An Ion Discharge-Driven Thruster Based on a Lithium Niobate Piezoelectric Transformer. Micromachines 16, 277.
Gao, C., Fan, S., Li, W., Wang, Y., Xia, Q., Hou, D., and Cao, Y. (2025). A High‐Performance Miniaturized Frequency Shift Detection System for QCM‐Based Gravimetric Sensing. Advanced Sensor Research 4, 2400148.
Fu, M., Ma, Z., Gao, C., Ye, Y., Li, W., Hou, D., and Cao, Y. (2025). A Multi-Functional VOC Sensor Based on Cascaded Quartz Crystal Resonators. IEEE Electron Device Lett., 1–1.
Cai, X., Wang, X., Feng, Z., Cao, Y., Zheng, X., and Li, W. (2025). Room-Temperature Single-Molecule Mass Detection via Feedback Control of ZnO Nanowire Resonator. ACS Appl. Mater. Interfaces, acsami.5c06688.
Cai, X., Han, X., Xie, J., Cao, Y., and Li, W. (2025). Exploring the application of ferroelectret nanogenerators in medical engineering. FlexMat, flm2.44.
Bashir, T., Li, W., and Xia, T. (2025). Radiation Diversity Enabled Self-Isolated Compact Dual-Band Cubic MIMO Antenna for Wireless Biomedical Implants in Variable and Dynamic Environment. IEEE J. Microwaves, 1–18.
Wang, Y., Cai, X., Guo, Y., Chen, Z., Cao, Y., Du, W., Xia, T., Sepulveda, N., and Li, W. (2024). Self-powered highly stretchable ferroelectret nanogenerator towards intelligent sports. Nano Trends 8, 100053.
Song, Z., Cai, X., Chen, Z., Zhu, Z., Cao, Y., and Li, W. (2024). Ultrathin, Stretchable, and Twistable Ferroelectret Nanogenerator for Facial Muscle Detection. Nanoenergy Advances 4, 344–354.
Ma, Z., Fu, M., Gao, C., Fan, S., Chi, H., Li, W., Hou, D., and Cao, Y. (2024). Trenched microwave resonator integrated with porous PDMS for detection and classification of VOCs with enhanced performance. Journal of Hazardous Materials 472, 134553.
Gu, Y., Cai, X., Thakuri, K., Yang, W., Guo, Y., and Li, W. (2024). Microrobotic Flight Enabled by Ultralight Ion Thrusters with High Thrust-to-Weight Ratio and Low Fabrication Cost. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (IEEE), pp. 6036–6042.
Du, W., Wang, S., Chi, H., Chen, X., Li, W., Wan, H., Hou, D., and Cao, Y. (2024). Evaluating head impact intensities and accelerations using flexible wearable sensors for traumatic brain injury assessment. Sensors and Actuators A: Physical 373, 115443.
Cai, X., Wang, Y., Cao, Y., Yang, W., Xia, T., and Li, W. (2024). Flexural-Mode Piezoelectric Resonators: Structure, Performance, and Emerging Applications in Physical Sensing Technology, Micropower Systems, and Biomedicine. Sensors 24, 3625.
Song, Z., Cai, X., Wang, Y., Yang, W., and Li, W. (2023). Leveraging Ferroelectret Nanogenerators for Acoustic Applications. Micromachines 14, 2145.
Li, W., Cao, Y., Wang, C., and Sepúlveda, N. (2023). Ferroelectret nanogenerators for the development of bioengineering systems. Cell Reports Physical Science, 101388.
Li, W., Cao, Y., and Sepúlveda, N. (2023). Thin Film Piezoelectric Nanogenerator Based on (100)-Oriented Nanocrystalline AlN Grown by Pulsed Laser Deposition at Room Temperature. Micromachines 14, 99.
Fath, A., Xia, T., and Li, W. (2022). Recent Advances in the Application of Piezoelectric Materials in Microrobotic Systems. Micromachines 13, 1422.
Velez, N.R., Allen, F.I., Jones, M.A., Donohue, J., Li, W., Pister, K., Govindjee, S., Meyers, G.F., and Minor, A.M. (2021). Nanomechanical testing of freestanding polymer films: in situ tensile testing and Tg measurement. Journal of Materials Research 36, 2456–2464.
Murphy, C., Cao, Y., Sepúlveda, N., and Li, W. (2021). Quick self-assembly of bio-inspired multi-dimensional well-ordered structures induced by ultrasonic wave energy. PLoS ONE 16, e0246453.
Schindler, C.B., Gomez, H.C., Acker-James, D., Teal, D., Li, W., and Pister, K.S.J. (2020). 15 Millinewton Force, 1 Millimeter Displacement, Low-Power MEMS Gripper. In 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE), pp. 485–488.
Cao, Y., Li, W., and Sepulveda, N. (2019). Performance of Self-Powered, Water-Resistant Bending Sensor Using Transverse Piezoelectric Effect of Polypropylene Ferroelectret Polymer. IEEE Sens. J. 19, 10327–10335.
Cao, Y., Figueroa, J., Pastrana, J.J., Li, W., Chen, Z., Wang, Z.L., and Sepulveda, N. (2019). Flexible Ferroelectret Polymer for Self-Powering Devices and Energy Storage Systems. ACS Appl. Mater. Interfaces 11, 17400–17409.
Cao, Y., Figueroa, J., Li, W., Chen, Z., Wang, Z.L., and Sepulveda, N. (2019). Understanding the dynamic response in ferroelectret nanogenerators to enable self-powered tactile systems and human-controlled micro-robots. Nano Energy 63, 103852. https://doi.org/10.1016/j.nanoen.2019.06.048.
Cao, Y., Li, W., Figueroa, J., Wang, T., Torres, D., Wang, C., Wang, Z.L., and Sepulveda, N. (2018). Impact-activated programming of electro-mechanical resonators through ferroelectret nanogenerator (FENG) and vanadium dioxide. Nano Energy 43, 278–284.
Zhang, S., Cai, L., Li, W., Miao, J., Wang, T., Yeom, J., Sepúlveda, N., and Wang, C. (2017). Fully Printed Silver‐Nanoparticle‐Based Strain Gauges with Record High Sensitivity. Adv. Electron. Mater. 3, 1700067.
Li, W., Torres, D., Diaz, R., Wang, Z., Wu, C., Wang, C., Wang, Z.L., and Sepulveda, N. (2017). Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics. Nat. Commun. 8, 15310.
Li, W., Torres, D., Wang, T., Wang, C., and Sepulveda, N. (2016). Flexible and biocompatible polypropylene ferroelectret nanogenerator (FENG): On the path toward wearable devices powered by human motion. Nano Energy 30, 649–657.
Chen, X., and Li, W. (2015). A Monolithic Self-Sensing Precision Stage: Design, Modeling, Calibration, and Hysteresis Compensation. IEEE/ASME Trans. Mechatron. 20, 812–823.
Li, W., Chen, X., and Li, Z. (2013). Inverse compensation for hysteresis in piezoelectric actuator using an asymmetric rate-dependent model. Review of Scientific Instruments 84, 115003.
Li, W., and Chen, X. (2013). Compensation of hysteresis in piezoelectric actuators without dynamics modeling. Sensors and Actuators A: Physical 199, 89–97.