1.研究方向:
在攻读硕士、博士学位阶段,主要从事人工智能相关领域研究工作,尤其是在对抗神经主题模型、神经主题模型、文本挖掘与自然语言处理及群智能优化方法领域积累了丰富的经验和扎实的基础,并取得了一些创新型成果,相关研究成果Google学术引用约1100余次。
2.代表性成果:
(1). Rui Wang, Jiahao Lu, Xincheng Lv, Shuyu Chang, Yansheng Wu, Yuanzhi Yao, Haiping Huang, Guozi Sun, Mining User Preferences from Online Reviews with the Genre-aware Personalized neural Topic Model. (WWW2025, CCF-A, 数据挖掘领域顶级会议)
(2). Rui Wang, Xing Liu, Yanan Wang, Shuyu Chang, Yuanzhi Yao, Haiping Huang, Mining Topics towards ChatGPT Using a Disentangled Contextualized-neural Topic Model, (WSDM2025, CCF-B, 数据挖掘领域顶级会议)
(3). Shuyu Chang, Rui Wang, Peng Ren, Qi Wang, Haiping Huang, A Large Language Model Guided Topic Refinement Mechanism for Short Text Modeling, (DASFAA2025, CCF-B, 数据库与数据挖掘领域重要会议,共同一作,一作为与黄海平教授共同指导的博士生)
(4). Rui Wang, Deyu Zhou, Haiping Huang, Yongquan Zhou, MIT: Mutual Information Topic Model for Diverse Topic Extraction, (IEEE Transactions on Neural Networks and Learning Systems, TNNLS,2024, CCF-B类期刊, IF:10.4)
(5). Rui Wang, Peng Ren, Xing Liu, Shuyu Chang, Haiping Huang, DCTM: Dual Contrastive Topic Model for identifiable topic extraction (Information Processing & Management, 2024, CCF-B类期刊, IF: 7.4)
(6). Rui Wang, Yanan Wang, Xing Liu, Haiping Huang, Guozi Sun, Bridging spherical mixture distributions and word semantic knowledge for Neural Topic Modeling, (Expert Systems with Applications, 2024, CCF-C类期刊,IF: 7.5)
(7). Rui Wang, Xuemeng Hu, Deyu Zhou, Yulan He, Yuxuan Xiong, Chenchen Ye, Haiyang Xu. Neural Topic Modeling with Bidirectional Adversarial Training.(ACL20,CCF-A,自然语言处理领域顶级会议)
(8).Rui Wang, Deyu Zhou, Yulan He. Open event Extraction from Online Text using a Generative Adversarial Network.(EMNLP19,CCF-B,自然语言处理领域顶级会议)
(9). Rui Wang, Deyu Zhou, Yulan He. ATM:Adversarial-neural Topic Model.(Information Processing & Management, CCF-B期刊)
(10). Rui Wang, Deyu Zhou, Yulan He. Optimising Topic Coherence with Weighted Polya Urn scheme. (Neurocomputing, CCF-C类期刊)
(11). Xuemeng Hu, Rui Wang, Deyu Zhou. Neural Topic Modeling with Cycle-Consistent Adversarial Training. (EMNLP20, CCF-B,自然语言处理领域顶级会议,共同一作,一作为博士期间负责师弟)
(12). Deyu Zhou, Xuemeng Hu, Rui Wang. Incorporating Document Relationship Graph for Neural Topic Modeing. (EMNLP20,CCF-B,自然语言处理领域顶级会议)
3.个人主页:
Researchgate:https://www.researchgate.net/profile/Rui-Wang-63
Google Scholar:https://scholar.google.com/citations?user=vzjqZzsAAAAJ&hl=zh-CN.
文本分析与挖掘研究组:TExt Analytics and Mining Group @ NJUPT (ruiwang-njupt.github.io)
(1)招生方向:自然语言处理,文本挖掘,机器学习,人工智能,数据挖掘,群智能优化算法等。
(2)可提供科研经费供同学读研期间参加国内外学术会议;校内推免生可提前进入实验室学习,并结合本科毕业设计予以指导;
(3)欢迎勤奋努力、认真刻苦的同学报考加入文本挖掘组。申请者应当具备熟练的编程基础,在本科期间有一定科研或项目经历的同学优先。欢迎同学们发送简历至我的工作邮箱。读研期间表现突出者,将有机会获得额外的科研补贴开头,同时会优先赞助其参加海内外学术交流。
(4)创造力与批判性思维是从事科研工作必不可少的特质,若你觉得自己总有些奇思异想、思维跳跃、不想走寻常路且想做一些有自身特点的东西,可与我联系。