1. 研究领域
模式识别与机器学习、深度学习等相关理论知识在遥感图像处理中的算法创新与应用。
1)高分辨率SAR遥感图像解译
2)光学遥感图像解译
3)多源遥感图像解译
2. 近年代表性成果:
[1] 吴倩倩, 倪康, 郑志忠. 基于双阶段高阶Transformer的遥感图像场景分类[J]. 遥感学报, 2025, 29(3): 792-807.
[2] Kang Ni, Chunyang Yuan, Zhizhong Zheng,
et al . DPGUNet: A dynamic pyramidal graph U-Net for SAR image
classification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024,
60(4): 5247-5263.
[3] Kang Ni, Chunyang Yuan, Zhizhong Zheng,
et al. MPT-SFANet: Multi-order pooling transformer-based
semantic feature aggregation network for SAR image classification[J]. IEEE
Transactions on Aerospace and Electronic Systems, 2024, 60(4):
4923-4938.
[4] Kang Ni, Qianqian Wu, Sichan Li,
et al . Remote sensing scene classification via second-order
differentiable token transformer network[J]. IEEE Transactions on Geoscience
and Remote Sensing, 2024, 62: 1-17.
[5] Kang Ni, Duo Wang, Guofeng Zhao,
et al. Hyperspectral and LiDAR classification via frequency
domain-based network[J]. IEEE Transactions on Geoscience and Remote
Sensing, 2024, 62: 1-17.
[6] Kang Ni, Tengfei Ma, Zhizhong Zheng,
et al . Object detection in remote sensing imagery based on prototype learning
network with proposal relation[J]. IEEE Transactions on Instrumentation and
Measurement, 2024, 73: 1-16.
[7] Kang Ni, Duo Wang, Zhizhong Zheng,
et al . MHST: multiscale head selection transformer for hyperspectral and LiDAR
classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 2024, 17: 5470-5483.
[8] Kang Ni, Mingling Zhai, Qianqian Wu,
et al. A wavelet-driven subspace basis learning network for
high-resolution synthetic aperture radar image classification[J]. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
2023, 16: 1900-1913.